

Unsupervised Crowd Counting with CLIP

Morten Møller Christensen (s204258), Jacob Schrøder Ipsen (s204440). Frederik Emil Nagel (s204213) DTU Compute, Technical University of Denmark

Introduction

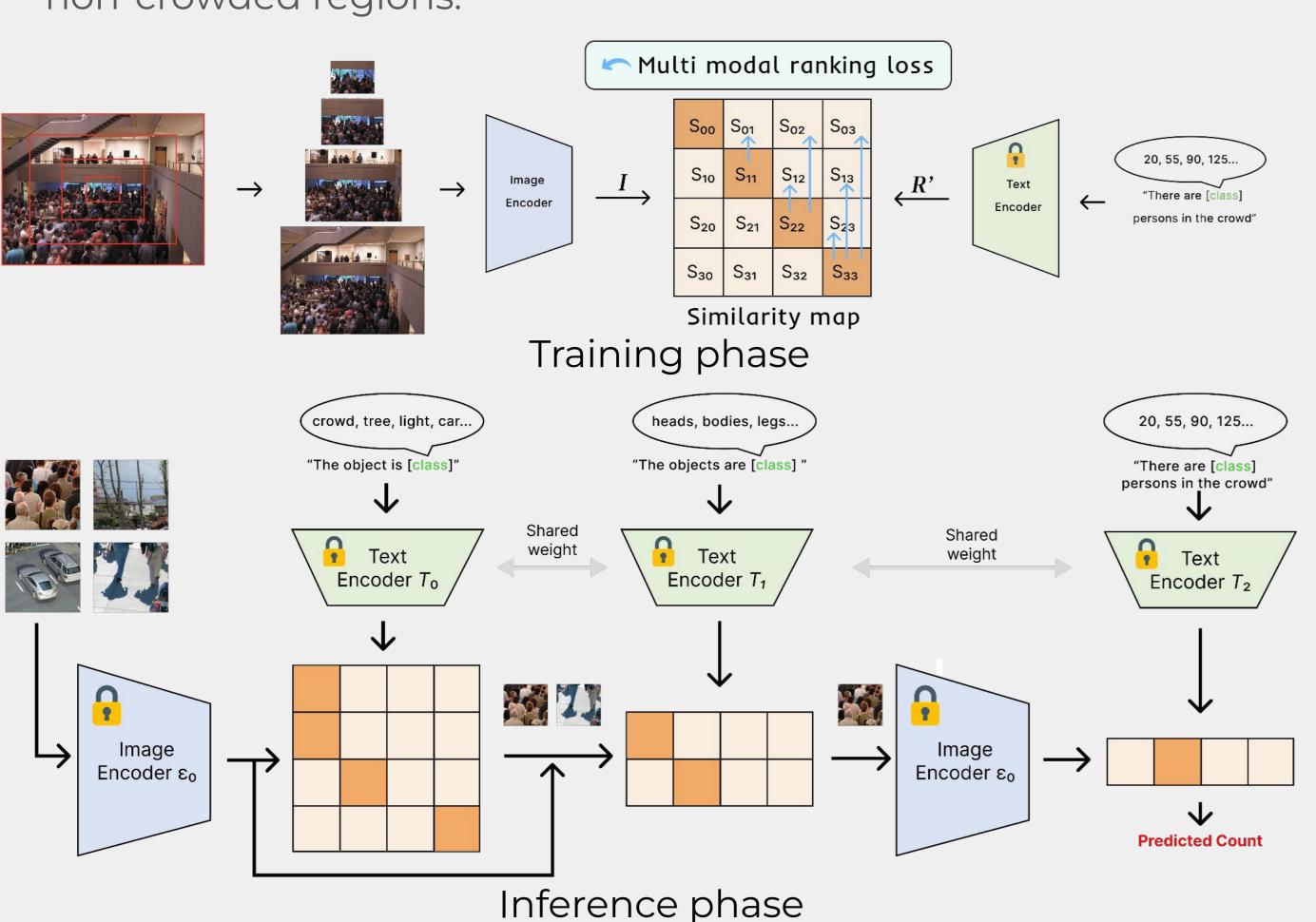
- This project explores unsupervised crowd counting in images using a pre-trained CLIP model.

Dataset

- 300 train images.
- 182 test images.
- Half of the test images are used for validation
- No transformations

Baseline

- Progressively extracts larger image crops.
- Uses CLIP to generate feature vectors for both image crops and text prompts.
- Trains the image encoder with a multimodal ranking loss to align smaller crops with corresponding prompts.
- At inference, applies a two-step filtering process to discard non-crowded regions.



Multimodal ranking loss (MMR)

 $L_r = Max(0, s_{i,j} - s_{i,j}), j < i$

 $S_{30} S_{31} S_{32}$

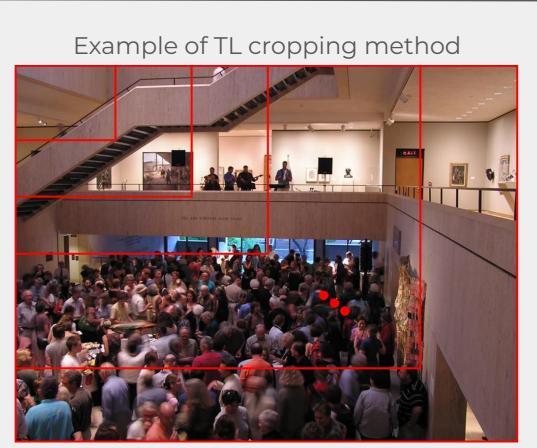
- $s_{a,b}$: Similarity between image patch a and text prompt b
- Enforces larger image patches align better with higher ranked prompts
- For <u>patch</u> i similarity to <u>prompt</u> i should be higher than to other prompts j<i
- Reflects assumption: larger patches contain more people

Increased Prompt Size: (IPS)

- Increased number of crop images from 6 to 10.
- Made more "diverse" prompt
- numbers.
- The core idea was to enable accurate prediction of smaller crowd counts.

Top Left: (TL)

- Core idea was to explore a different way of cropping
- We crop from top left corner in increasingly bigger crops



Original prompt numbers:

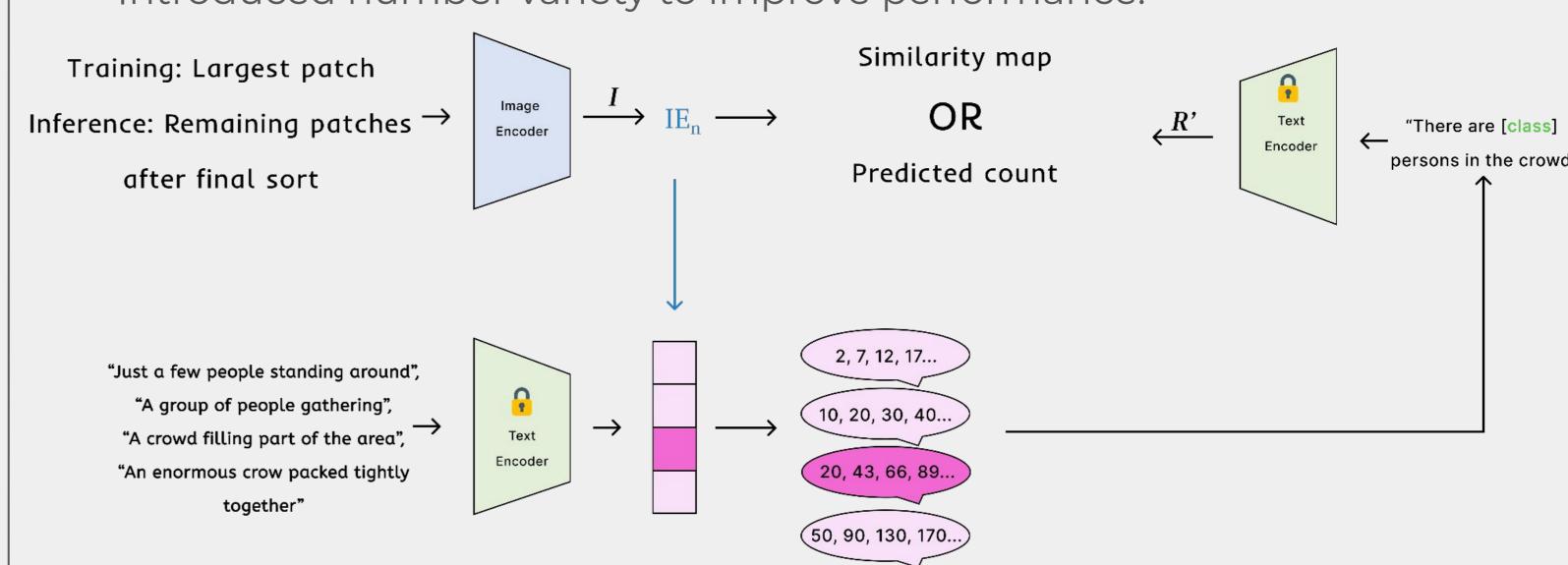
[5, 30, 55, 80, 105, 130, 155, 180, 205]

[20, 55, 90, 125, 160, 195]

New prompt numbers:

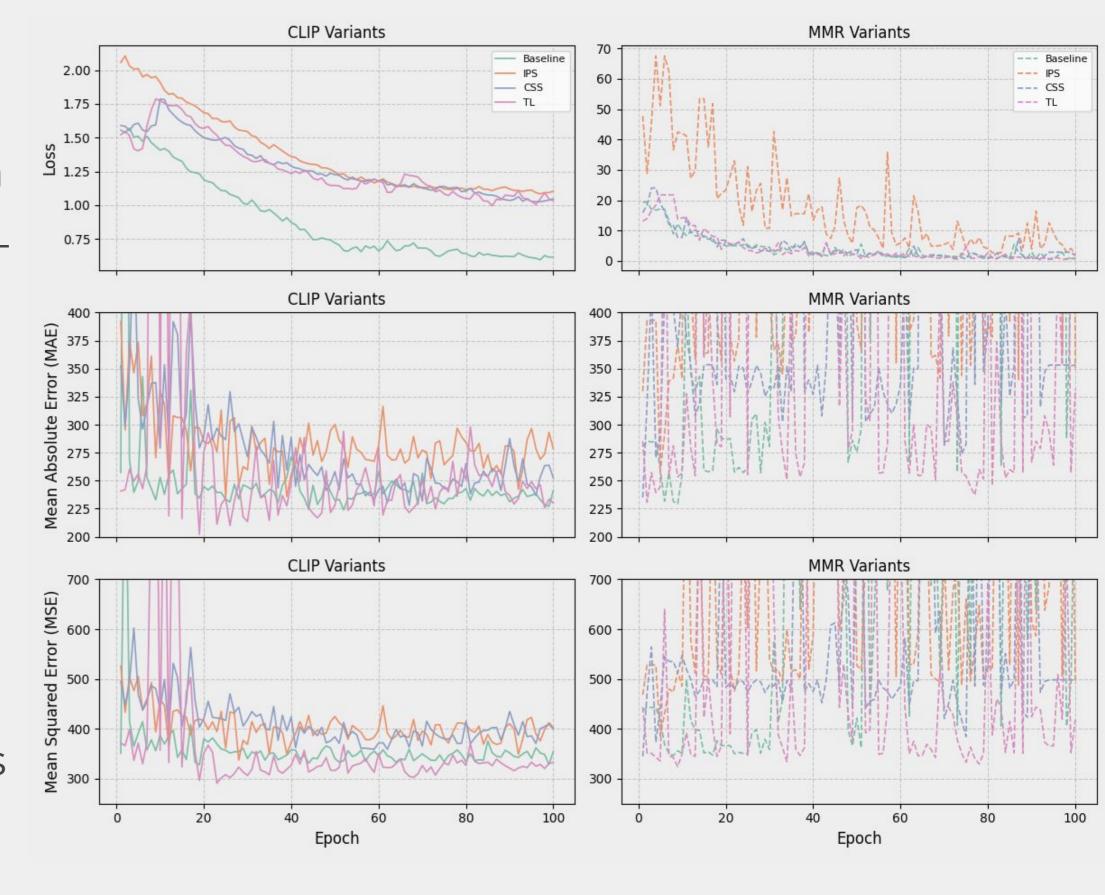
Crowd Size Screening (CSS)

- Counts dynamically adjust based on crowd density of largest patch.
- Same design applied during inference (post-final sift step) to every remaining patch.
- Introduced number variety to improve performance.



Training:

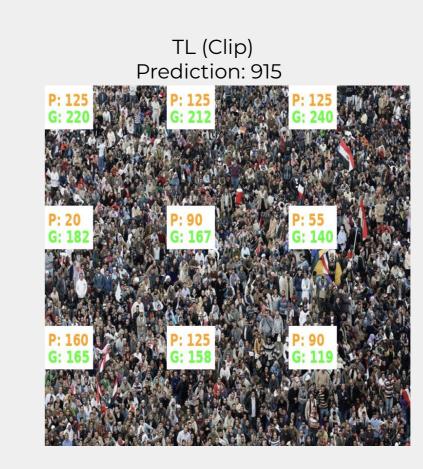
- Batch size: 1 lr: 1e-4
- Optimizer = RAdam
- MMR variants are highly unstable
- Large variance in MAE/MSE despite decreasing loss
- CLIP variants show smoother convergence
- Baseline (MMR) loss and MAE are poorly correlated

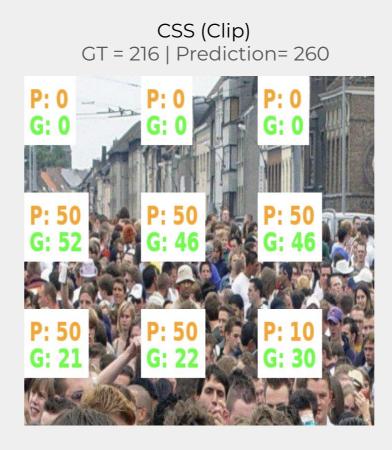


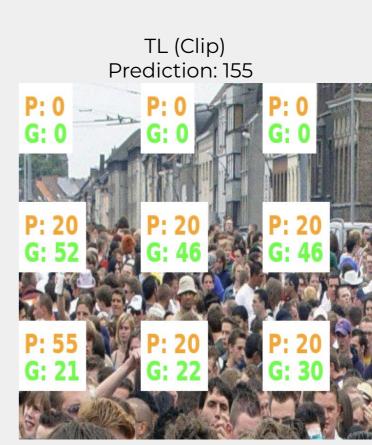
Results

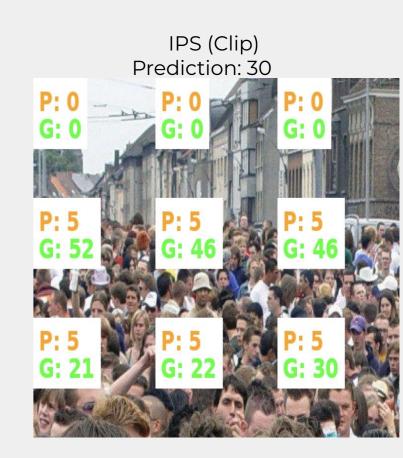
- Lower training loss for MMR did not translate into lower MAE
- CLIP based models are more stable and accurate
- IPS and CSS outperform Baseline in both MAE and MSE
- All models underestimate large crowds significantly

Model	MSE	MAE
Baseline (MMR)	1029	937
Baseline (Clip)	355	241
IPS (MMR)	484	347
IPS (Clip)	402	277
CSS (MMR)	: 355	273
CSS (Clip)	349	232
TL (MMR)	¦ 418	331
TL (Clip)	332	229









Discussion and future work

- Prompt structure matters: Fixed sorting introduces bias
- Prompt tuning or distractor classes may reduce false positives
- Directly fine tuning the CLIP encoder is too aggressive: Use a lightweight adapter instead
- Explore alternative sorting strategies for inference ranking
 - Why not sort in other ways?